Unsolvable Problems Part One

Outline for Today

- Self-Reference Revisited
 - Programs that compute on themselves.
- Self-Defeating Objects
 - Objects "too powerful" to exist.
- The Fortune Teller
 - Can you escape the future?
- Why Do Programs Loop?
 - ... and can we eliminate loops?
- Undecidable Problems
 - Something beyond the reach of algorithms.

Recap from Last Time

R and RE

• A language *L* is *recognizable* if there is a TM *M* with the following property:

 $\forall w \in \Sigma^*$. (*M* accepts $w \leftrightarrow w \in L$).

- That is, for any string w:
 - If $w \in L$, then M accepts w.
 - If $w \notin L$, them *M* does not accept *w*.
 - It might reject *w*, or it might loop on *w*.
- This is a "weak" notion of solving a problem.
- The class **RE** consists of all the recognizable languages.

R and **RE**

• A language *L* is *decidable* if there is a TM *M* with the following properties:

 $\forall w \in \Sigma^*. (M \text{ accepts } w \leftrightarrow w \in L).$ M halts on all inputs.

- That is, for any string w:
 - If $w \in L$, then *M* accepts *w*.
 - If $w \notin L$, then *M* rejects *w*.
- This is a "strong" notion of solving a problem.
- The class ${\bf R}$ consists of all the decidable languages.

The Universal TM

- The *universal Turing machine*, denoted U_{TM}, is a TM with the following behavior: when run on a string (*M*, *w*), where *M* is a TM and *w* is a string, U_{TM} will
 - ... accept $\langle M, w \rangle$ if M accepts w,
 - ... reject $\langle M, w \rangle$ if M rejects w, and
 - ... loop on $\langle M, w \rangle$ if M loops on w.
- A_{TM} is the language recognized by the universal TM. This is the language

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

New Stuff!

Part One: Self-Defeating Objects

A *self-defeating object* is an object whose essential properties ensure it doesn't exist.

Question: Why is there no largest integer?

Answer: Because if n is the largest integer, what happens when we look at n+1?

Self-Defeating Objects

Theorem: There is no largest integer.

- **Proof sketch:** Suppose for the sake of contradiction that there is a largest integer. Call that integer n.
 - Consider the integer n+1.
 - Notice that n < n+1.
 - But then *n* isn't the largest integer.
 - Contradiction! -ish

Self-Defeating Objects

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer *n*.

Consider the integer n+1.

Notice that n < n+1.

But then *n* isn't the large Contradiction! -*ish*

We're using *n* to construct something that undermines *n*, hence the term "self-defeating."

An Important Detail

Careful – we're assuming what we're trying to prove!

Claim: There is a largest integer. **Proof:** Assume x is the largest integer. Notice that x > x - 1. So there's no contradiction. \blacksquare -ish

How do we know there's no contradiction? We just checked one case.

Self-Defeating Objects

• If you can show

$x \ exists \rightarrow \bot$

then you know that *x* doesn't exist. (This is a proof by contradiction.)

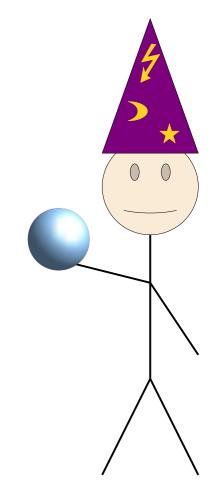
• If you can show

$x \ exists \rightarrow \mathsf{T}$

you cannot conclude that *x* exists. (This is not a valid proof technique.)

Part Two: The Fortune Teller

- A fortune teller appears who claims they can see into anyone's future.
- For a nominal fee, the fortune teller will tell you anything you want to know about the future.



- One day, a trickster arrives. The trickster thinks the fortune teller is lying and can't really see the future.
- The trickster says the following:

"I have a yes/no question about the future. But before I ask my question, let's talk payment.

If you answer yes, then I'll pay you \$137.

If you answer no, then I'll pay you \$42.

• The fortune teller thinks for a moment, then agrees.

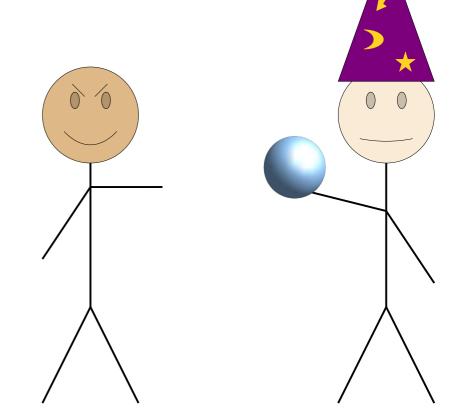
Trickster pays \$137 if the fortune teller answers "yes."

Trickster pays \$42 if the fortune teller answers "no."

• The trickster then asks this question:

"Am I going to pay you \$42?"

- The fortune teller is trapped!
- Talk to your neighbor – why?

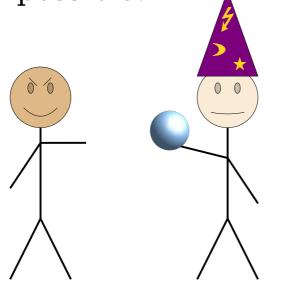


Trickster pays \$137 if the fortune teller answers "yes."

Trickster pays \$42 if the fortune teller answers "no."

- The payment scheme the fortune teller agreed to means Fortune Teller Says Yes \leftrightarrow Trickster Pays \$137.
- The trickster's question to the fortune teller means Fortune Teller Says Yes \leftrightarrow Trickster Pays \$42.
- Putting this together, we get

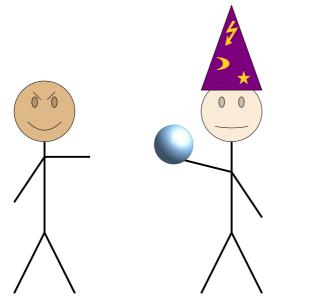
- **Trickster Pays \$42** \leftrightarrow **Trickster Pays \$137**.
- This is impossible!



Trickster pays \$137 if the fortune teller answers "yes."

Trickster pays \$42 if the fortune teller answers "no."

- The fortune teller is a self-defeating object.
- The trickster's strategy is to couple the fortune teller's behavior to what the future holds.
 - The trickster's behavior is chosen in advance to make the fortune teller's answer wrong.
- Therefore, the fortune teller can't answer all questions about all people in the future.



Trickster pays \$137 if the fortune teller answers "yes."

Trickster pays \$42 if the fortune teller answers "no."

Part Three: Why Do Programs Loop?

Thoughts on Loops

- In practice, the programs we write sometimes go into infinite loops.
- In Theoryland, Turing machines are allowed to loop. This happens if they don't accept and don't reject.
- **Question:** Why are infinite loops possible?
- Or rather: are infinite loops an inherent part of computation, or are they some weird sort of "accident" in how we program computers?

Thoughts on Loops

- **Theorem:** The language A_{TM} is recognizable, but undecidable.
 - There's a *recognizer* for A_{TM} (specifically, the universal Turing machine U_{TM}).
 - It is impossible to build a *decider* for this language.
- Stated differently, there's a program we can write (a universal TM) that *has* to loop infinitely on some inputs.
- **Goal:** Prove this theorem, and explore its theoretical and philosophical implications.

A_{TM} Revisited

- As a refresher, the language A_{TM} is

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

- The universal TM U_{TM} has the following behavior when given as input a TM M and a string w:
 - If *M* accepts *w*, then U_{TM} accepts $\langle M, w \rangle$.
 - If *M* rejects *w*, then U_{TM} rejects $\langle M, w \rangle$.
 - If *M* loops on *w*, then U_{TM} loops on $\langle M, w \rangle$.
- $U_{\rm TM}$ is a recognizer for $A_{\rm TM},$ but because of that last case it's not a decider for $A_{\rm TM}.$

A_{TM} Revisited

- As a refresher, the language A_{TM} is

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

- Given a TM *M* and a string *w*, a decider *D* for A_{TM} would need to have this behavior:
 - If M accepts w, then D? $\langle M, w \rangle$.
 - If M rejects w, then D ? $\langle M, w \rangle$.
 - If *M* loops on *w*, then *D* ? $\langle M, w \rangle$.
- This is basically the same set of requirements as U_{TM} , except for what happens if M loops on w.
- Our goal is to prove that there is no way to build a program that meets these requirements.

A_{TM} Revisited

- We can envision a decider for $A_{\ensuremath{\text{TM}}}$ as a function

```
bool willAccept(string fn, string input)
that takes as input the source code of a function (fn)
and a string representing an input to that function
```

(input).

- It then does the following:
 - If fn(input) returns true, willAccept(fn, input) returns true.
 - If fn(input) returns false, willAccept(fn, input) returns false.
 - If fn(input) loops, then willAccept(fn, input) returns false.
- We're going to show it's impossible to write a function that actually does this. But for now, let's just explore what such a decider would do.

```
function = "bool f(string input) {
                                        function = "bool g(string input) {
 if (input == "") return false;
                                          while (true) {
  return input[0] == 'a';
                                            input += input;
}";
                                        }";
input = "abbababba";
                                        input = "yay! ";
willAccept(function, input) = ?
                                        willAccept(function, input) = ?
function = "bool h(string input) {
                                        function = "bool j(string input) {
                                          int n = input.length();
  for (char c: input) {
    if (c != input[0]) return true;
                                          while (n > 1) {
                                            if (n % 2 == 0) n /= 2;
                                            else n = 3*n + 1;
  return false;
}";
                                          return true;
input = "aaaaaa";
                                        }";
                                        input = /* 10<sup>137</sup> a's */;
                                        willAccept(function, input) = ?
willAccept(function, input) = ?
```

For each of these instances, what does
willAccept(function, input) return?

Deciding A_{TM}

- Earlier this quarter you explored sums of four squares. Now, let's talk about sums of three cubes.
- Are there integers x, y, and z where...

•
$$x^3 + y^3 + z^3 = 10?$$

•
$$x^3 + y^3 + z^3 = 11?$$

- $x^3 + y^3 + z^3 = 12?$
- $x^3 + y^3 + z^3 = 13?$

Deciding A_{TM}

• Surprising fact: until 2019, no one knew whether there were integers *x*, *y*, and *z* where

$$x^3 + y^3 + z^3 = 33.$$

• A heavily optimized computer search found this answer:

x = 8,866,128,975,287,528y = -8,778,405,442,862,239z = -2,736,111,468,807,040

• As of August 2022, no one knows whether there are integers *x*, *y*, and *z* where

$$x^3 + y^3 + z^3 = 114.$$

Deciding A_{TM}

• Consider the language

 $L = \{ \mathbf{a}^n \mid \exists x \in \mathbb{Z}. \exists y \in \mathbb{Z}. \exists z \in \mathbb{Z}. x^3 + y^3 + z^3 = n \}$

• Here's code for a recognizer to see whether such a triple exists:

```
bool hasTriple(int n) {
  for (int max = 0; ; max++)
    for (int x = -max; x <= max; x++)
    for (int y = -max; y <= max; y++)
    for (int z = -max; z <= max; z++)
        if (x*x*x + y*y*y + z*z*z == n)
        return true;
}</pre>
```

- Imagine calling willAccept(/* hasTriple code */, 114).
 - If such a triple exists, willAccept returns true.
 - If no such triple exists, willAccept returns false.
- *Key Intuition:* However willAccept is implemented, it has to be clever enough to resolve open problems in mathematics!

Why is A_{TM} Hard?

- Intuition: A decider for A_{TM} would be able to...
 - ... determine whether the hailstone sequence terminates for any input. (Write a recognizer that runs the hailstone sequence, then feed it into the decider for A_{TM} .)
 - ... see if any number is the sum of three cubes. (Write a recognizer that tries all infinitely many triples of integers, then feed it into the decider for A_{TM} .)
 - ... and much, much more.
- In other words, this seemingly simple problem of "is this program going to terminate?" accidentally scoops up a bunch of other seemingly harder problems.

Time-Out for Announcements!

Problem Sets

- PS6 was due earlier today. Your diligent CAs are working on grading them! Solution will be released Monday morning
- PS7 has been released and will be due next **Wednesday** at 5:30 PM. Only the coding portion will be mandatory.

Please evaluate this course in Axess. Your comments really make a difference.

Back to CS103!

Part Four: Self-Referential Software

Self-Referential Programs

• If TMs can take other TMs as input, could they take themselves as input?

YES.

- TMs can take their own code as input, and ask questions about (or even execute!) their own code.
- In fact, any computing system that's equal in power to a Turing machine possesses some mechanism for self-reference.
- Want to see how deep the rabbit hole goes? Take CS154!

Quines

- A *Quine* is a special kind of selfreferential program that, when run, prints its own source code.
- Believe it or not, it is possible to write such a program!
- See zip file with lecture slides for code.

Self-Referential Programs

- **Claim:** Going forward, assume that any function has the ability to get access to its own source code.
- This means we can write programs like the one shown here:

```
bool narcissist(string input) {
    string me = /* source code of narcissist */;
    return input == me;
}
```

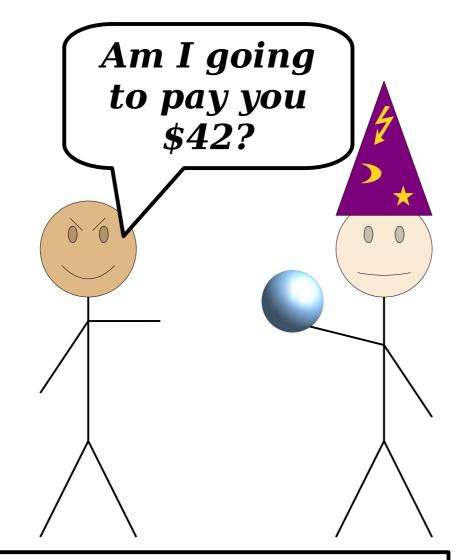
Part Five: Putting It All Together

To Recap

• We're assuming that, somehow, someone wrote a function

bool willAccept(string function, string input); that takes the code of a function and an input to that function, then

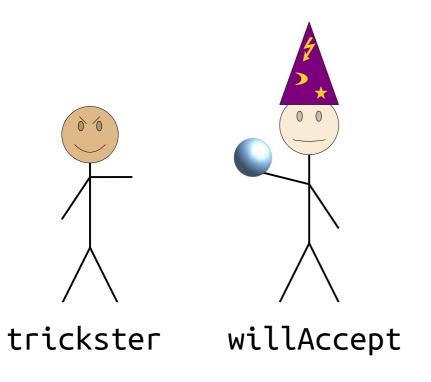
- returns true if function(input) returns true, and
- returns false if function(input) doesn't return true.
- *Goal:* Show that this decider is "self-defeating;" its power is so great that it undermines itself.
- **Idea:** Convert the fortune teller story into a program.



Trickster pays \$137 if the fortune teller answers "yes."

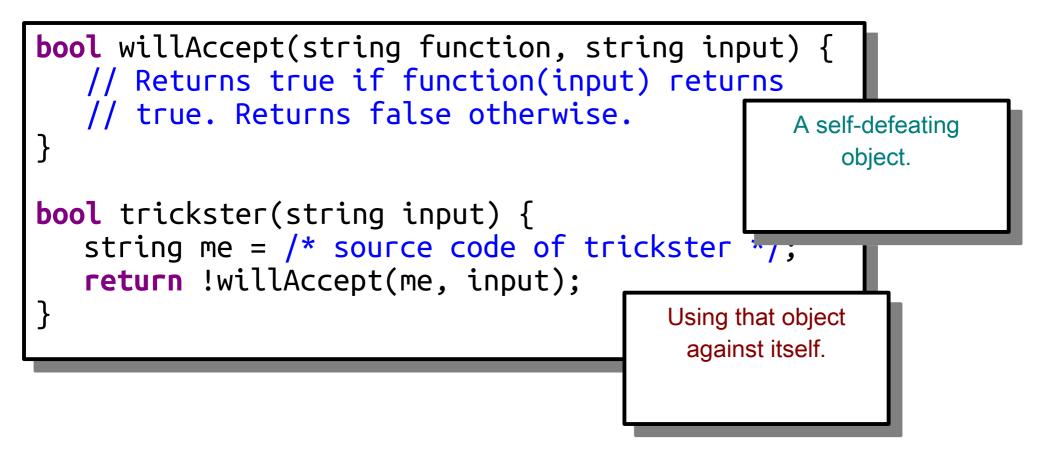
Trickster pays \$42 if the fortune teller answers "no."

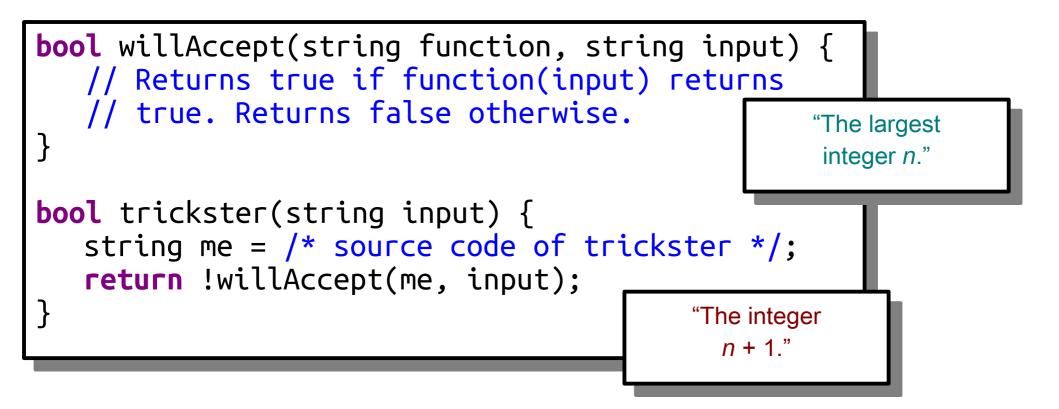
```
bool willAccept(string function, string input) {
    // Returns true if function(input) returns
    // true. Returns false otherwise.
}
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```



If willAccept says trickster will return true, then trickster returns false.

If willAccept says trickster will not return true, then trickster returns true.





Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction that there is a largest integer. Call that integer *n*.

Consider the integer n+1.

Notice that n < n+1.

But then *n* isn't the largest integer.

Contradiction! **—***-ish*

Proof:

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} .

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true.

Case 2: willAccept(me, input) returns false.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true.

Case 2: willAccept(me, input) returns false.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM} , this means trickster(w) doesn't return true.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM} , this means trickster(w) doesn't return true. However, given how trickster is written, in this case trickster(w) returns true.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM} , this means trickster(w) doesn't return true. However, given how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM} , this means trickster(w) doesn't return true. However, given how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \notin \mathbf{R}$.

Proof: By contradiction; assume that $A_{TM} \in \mathbf{R}$. Then there is a decider D for A_{TM} . We can represent D as a function

bool willAccept(string function, string w);

that takes in the source code of a function function and a string w, then returns true if function(w) returns true and returns false otherwise.

Given this, consider this function trickster:

```
bool trickster(string input) {
    string me = /* source code of trickster */;
    return !willAccept(me, input);
}
```

Choose a string *w*. We consider two cases:

Case 1: willAccept(me, input) returns true. Since willAccept decides A_{TM} , this means trickster(w) returns true. However, given how trickster is written, in this case trickster(w) returns false.

Case 2: willAccept(me, input) returns false. Since willAccept decides A_{TM} , this means trickster(w) doesn't return true. However, given how trickster is written, in this case trickster(w) returns true.

In both cases we reach a contradiction, so our assumption must have been wrong. Therefore, $A_{TM} \notin \mathbf{R}$.



All Languages

What Does This Mean?

- In one fell swoop, we've proven that
 - A_{TM} is **undecidable**; there is no general algorithm that can determine whether a TM will accept a string.
 - $\mathbf{R} \neq \mathbf{R}\mathbf{E}$, because $A_{TM} \notin \mathbf{R}$ but $A_{TM} \in \mathbf{R}\mathbf{E}$.
- What do these three statements really mean? As in, why should you care?

$A_{TM} \notin \mathbf{R}$

- What exactly does it mean for $A_{_{TM}}$ to be undecidable?

Intuition: The only general way to find out what a program will do is to run it.

• As you'll see, this means that it's provably impossible for computers to be able to answer most questions about what a program will do.

$A_{TM} \notin \mathbf{R}$

• At a more fundamental level, the existence of undecidable problems tells us the following:

There is a difference between what is true and what we can discover is true.

• Given a TM *M* and a string *w*, one of these two statements is true:

M accepts w M does not accept w

But since A_{TM} is undecidable, there is no algorithm that can always determine which of these statements is true!

$\mathbf{R} \neq \mathbf{R}\mathbf{E}$

• Because $\mathbf{R} \neq \mathbf{R}\mathbf{E}$, there is a difference between decidability and recognizability:

In some sense, it is fundamentally harder to solve a problem than it is to check an answer.

• There are problems where, when the answer is "yes," you can confirm it (run a recognizer), but where if you don't have the answer, you can't come up with it in a mechanical way (build a decider).

Next Time

- Why All This Matters
 - Important, practical, undecidable problems.
- Intuiting RE
 - What exactly is the class \mathbf{RE} all about?
- Verifiers
 - A totally different perspective on problem solving.

• Beyond RE

• Finding an impossible problem using very familiar techniques.